
ProgFed: Effective, Communication, and Computation Efficient Federated
Learning by Progressive Training

Hui-Po Wang Sebastian Stich Yang He Mario Fritz
CISPA Helmholtz Center for Information Security, Germany

Overview

We find that leveraging learning dynamics helps re-
duce resource demands in federated learning and pro-
pose ProgFed, the first federated progressive learning
framework to utilize such a feature. Our method ex-
tends progressive learning to general federated pre-
diction tasks and presents efficiency and preferable
performance in various settings.

Contributions

•Novelty. We propose ProgFed, the first
federated progressive learning framework to
reduce the training resource demands

•Efficiency. Our method reduces communication
and computation costs on various datasets, tasks,
and architectures, including 25% computation and
up to 32% two-way communication costs in
federated classification and 63% in federated
segmentation, without sacrificing performance

•Compatibility. Our method is compatible with
existing compression techniques with up to 5%
improvement and advanced federated
optimization with up 4.3% improvement

Figure 1:Performance vs. costs in federated settings.

Project Page

More results and code can found in our project page
https://a514514772.github.io/ProgFed/.

ProgFed

• Progressive learning for Federated Prediction Tasks
Progressive Learning (PL) inherently reduces communication and computation costs, but it is typically designed for
image synthesis in centralized settings. ProgFed (1) divides the original models into several disjoint components to
retain the benefits of PL and (2) introduces light-weight temporal classifiers to facilitate training across clients.

• Training of Progressive Models
To train the progressive model, we divide the original modelM into disjoint features extractors Ei and the classifier
GS and extends the model every Ts epochs. The temporal classifier Gi will be discard when the model grows. We
found that denoting roughly half of the total number of training iterations T to progressive training, and setting
Ts = T

2S for s < S, TS = T (S+1)
2S , such that T =

∑S
s=1Ts, works well across all considered training tasks.

• Asymptotic Rate
We show the convergence rate and highlight that it is at most twice slower than the standard training due to the
choice of the length of progressive training but with much cheaper per-iteration costs (empirically observed faster
than the end-to-end training).

Theorem Let Assumptions 3.1 (L-smoothness) and 3.2 (bounded noise) hold, and let the stepsize in iteration t be
γt = αtγ with γ = min

{
1
L, (

F0
σ2T)1

2

}
, αt =min

{
1, 〈∇f (xt)|Es,∇f s(xst)|Es〉

‖∇f s(xst)|Es‖2

}
. Then it holds for any ε > 0,

• 1
T

∑T−1
t=0 α

2
t

∥∥∇f s(xst)|Es∥∥2
< ε, after at most the following number of iterations T:

O
(
σ2

ε2
+ 1
ε

)
· LF0 . (1)

• Let q := maxt∈[T]

(
qt := ‖∇f (xt)‖

αt‖∇f s(xst)|Es‖

)
, then 1

T

∑T−1
t=0 ‖∇f (xt)‖2 < ε after at most the following iterations T :

O
(
q4σ2

ε2
+ q2

ε

)
· LF0 , (2)

where F0 := f (x0)− (minx f (x)).

Experimental Results

ProgFed is more efficient than standard training
with the same training epochs (also at any time
during training) and compatible with existing
compression and optimization.
• Computation Efficiency
Table 1:Results on CIFAR-100 in centralized settings.

• Communication Efficiency
Table 2:Results in federated setups: Accuracy (%) and
Dice scores (%), followed by cost reduction (CR) as
compared to the end-to-end.

• Compatibility
Table 3:Federated ResNet-18 on CIFAR-100 with (1)
LQ-X denotes linear quantization followed by used bits
and (2) SP-X denotes sparsification followed by ratios.

Table 4:Results of ProgFed with FedAvg, FedProx, and
FedAdam on CIFAR-100 in the federated setting.

https://a514514772.github.io/ProgFed/

