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Overview ProgFed Experimental Results
We find that leveraging learning dynamics helps re- * Progressive learning for Federated Prediction Tasks ProgFed is more efficient than standard training
duce resource demands in federated learning and pro- Progressive Learning (PL) inherently reduces communication and computation costs, but it is typically designed for with the same training epochs (also at any time
pose ProgFed, the first federated progressive learning image synthesis in centralized settings. ProgFed (1) divides the original models into several disjoint components to during training) and compatible with existing
framework to utilize such a feature. Our method ex- retain the benefits of PL and (2) introduces light-weight temporal classifiers to facilitate training across clients. compression and optimization.
tgnds progressive learning to ge.neral federated pre- G | G, e Computation Efficiency
diction tasks and presents efficiency and preterable E, t E, t Es - - Table 1:Results on CIFAR-100 in centralized settings.
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federated progressive learning framework to T 5 o e Communication Efficiency
reduce the training resource demands FoRTEERIE oS FoRTEEEE WS Table 2:Results in federated A %) and
(a) Feed-forward networks (b) U-nets (symmetric growing). able 2:Results in federated setups: Accuracy (%) an

Dice scores (%), followed by cost reduction (CR) as
e Training of Progressive Models compared to the end-to-end.

To train the progressive model, we divide the original model M into disjoint features extractors E; and the classifier

e Efficiency. Our method reduces communication
and computation costs on various datasets, tasks,
and architectures, including 25% computation and

: : . Baseline Ours CR
L - (G5 and extends the model every T epochs. The temporal classifier (G; will be discard when the model grows. We
up to 32% two-way communication costs in o | Y £s OP P e v | O 5 | EMNIST 8575+ 0.11 8567 +0.06 -29.49%
fod] 1 classificats d 63% in fed J found that denoting roughly halt of the total number of training iterations 1" to progressive training, and setting CIFAR-10 8467 +0.14 84.85+030 -29.70%
ederated classification and 037 in federate T T o T(5+1) b that T S X ' ' ored trainine fack CIFAR-100  52.08 +0.44 5323+0.09 -22.90%
segmentation, without sacrificing performance s =g 01§ < w0, L§=—9g—, SUC & = 2511, works well across all considered training tasks. BraTS (Aym.) 86.77 £ 045 87.66 + 049  -5.02%
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e Compatibility. Our method is compatible with | G, G el o1
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existing compression techniques with up to 5% E, E, E, ¢ E, E, Eg
improvement and advanced federated Table 3:Federated ResNet-18 on CIFAR-100 with (1)
optimization with up 4.3%, improvement LQ-X denotes linear quantization followed by used bits
— — N > — — o I > — % and (2) SP-X denotes sparsification followed by ratios.
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choice of the length of progressive training but with much cheaper per-iteration costs (empirically observed faster

than the end-to-end training). Table 4:Results of ProgFed with FedAvg, FedProx, and
FedAdam on CIFAR-100 in the federated setting.

Figure 1:Performance vs. costs in federated settings.
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Theorem Let Assumptions 3.1 (L-smoothness) and 3.2 (bounded noise) hold, and let the stepsize in iteration ¢ be
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